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Abstract. The projective representations of thek-Galilei group Gk are found by contracting the
relevant representations of theκ-Poincaŕe group. The projective multiplier is found. It is shown
that it is not possible to replace the projective representations of Gk by vector representations
of some of its extensions.

1. Introduction

Recently attention has been paid to particular deformations of spacetime symmetries
depending on a dimensionful parameter, the so-calledκ-symmetries [1–12]. They are
interesting because they provide a rather mild deformation of classical spacetime symmetries
with a dimensionful parameter (cut-off?) naturally built in. It is, of course, still an open
question whether quantum symmetries provide a proper way of introducing a fundamental
energy/length scale into the theory; in particular, special attention should be paid to the
problems related to non-cocommutativity of the coproduct which apparently seems to be in
some contradiction with kinematical properties of many-particle systems (see, however, [8]).
In spite of this, it could be interesting to study in more detail the properties ofκ-deformed
spacetime symmetries. Some preliminary studies of their physical implications have already
been undertaken. In particular, Bacry [9] has found that they possess some attractive features
from the point of view of the general requirements imposed on kinematical symmetries.

In most papers that have appeared so far the deformations of Poincaré symmetry have
been studied. However, it seems to be interesting to analyse the deformation of its non-
relativistic counterpart, i.e. the deformed Galilei group. One version of deformed Galilei
algebra was studied in [13], where it was shown to provide some properties of theXXZ

magnetic Heisenberg model, in particular the energy spectrum of the multi-quasi-particles
bound states. In [3] another deformed Galilei algebra (the so-calledk-Galilei algebra) was
found by applying the contraction procedure (c→∞, κ → 0, k ≡ κc kept fixed) to theκ-
Poincaŕe algebra in a trigonometric version. The properties of this algebra (in a hyperbolic
version) as well as the algebra obtained by lettingc → ∞, κ → ∞, k ≡ κ/c fixed, were
studied in [7]. In [10], theκ-Poincaŕe group was contracted to thek-Galilei group and the
latter was shown to be dual to thek-Galilei algebra. The bicross-product structure of both
was revealed and the projective representations of the two-dimensional counterpart of the
k-Galilei group were constructed. Other deformed Galilei algebras were constructed using
a very general contraction scheme in [11] and [12], where their bicross-product structures
were also exhibited.
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In the present paper we continue the study of thek-Galilei group. In section 2 the
projective multiplier is found by contracting the trivial multiplier on theκ-Poincaŕe group.
In the k → ∞ limit it reduces to the standard non-trivial multiplier on the classical
Galilei group. In section 3 the unitary projective representations of thek-Galilei group
are constructed (again by contraction from the representations of theκ-Poincaŕe group) and
their infinitesimal form is given. The generators of the infinitesimal representations form the
algebra which is a ‘central’ extension of thek-Galilei algebra. A question arises whether this
structure can be lifted to the Hopf algebra structure. This question is equivalent to asking
whether there exists a ‘central’ extension of thek-Galilei group such that the projective
representations of the latter are equivalent to the standard (vector) representations of its
central extension. In section 4 we prove that no such central extension exists. This was
already noticed in [7], where it was shown that the relevant central extension cannot be
obtained by a standard contraction procedure from the trivially extendedκ-Poincaŕe group.
However, it should be stressed that our result refers to the particular deformation of the
Galilei group we are considering, for other deformations the central extension may exist (cf
[7, 8]). Section 5 is devoted to some conclusions. Finally, the technicalities are relegated
to the appendix.

We conclude the introduction with a short résuḿe of results obtained in [10].
In order to find thek-Galilei group one can apply the contraction procedure to the

κ-Poincaŕe group defined in [2]. The following convenient parametrization of the Lorenz
group can be used for the contraction procedure (in fact, it differs slightly from the one
adopted in [2])

30
0 = 1√

1− v2/c2
≡ γ

30
i = γ

c
vi

3i
0 = γ

c
vi (1)

3i
j =

(
δik + (γ − 1)

vivk

v2

)
Rkj

RRT = I
as well as

a0 = cτ.
The following Hopf algebra Gk (k-Galilei group) is obtained from the contractionκ → 0,
c→∞, k ≡ κc fixed:

[Rij , R
k
l ] = 0 [Rij , v

k] = 0 [vi, vj ] = 0

[ai, aj ] = 0 [τ, ai ] = i

k
ai

[τ, vi ] = i

k
vi [τ, Rij ] = 0

[vi, aj ] = i

k

(
1

2
v2δij − vivj

)
[Rij , a

k] = i

k
(δikv

mRmj − viRkj ) (2)

1Rij = Rik ⊗ Rkj
1vi = Rij ⊗ vj + vi ⊗ I
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1ai = Rij ⊗ aj + vi ⊗ τ + ai ⊗ I
1τ = τ ⊗ I + I ⊗ τ
(Rij )

∗ = Rij (vi)∗ = vi (ai)∗ = ai τ ∗ = τ.
Gk has a bicross-product structure

Gk = T ∗ BJ C(E(3))
whereC(E(3)) is the algebra of functions on the classical groupE(3) generated byRij and
vi while T ∗ is defined by

[τ, ai ] = i

k
ai [ai, aj ] = 0

1ai = ai ⊗ I + I ⊗ ai 1τ = τ ⊗ I + I ⊗ τ.
The k-Galilei algebraG̃k, dual to Gk, reads

[Ji, Jk] = iεiklJl [Ji,Kk] = iεikjKj [Ji, Pk] = iεikjPj

[Ki,H ] = iPi [Ki, Pj ] = i

2k
δijP

2− i

k
PiPj

1Ji = Ji ⊗ I + I ⊗ Ji
1H = H ⊗ I + I ⊗H (3)

1Ki = I ⊗Ki +Ki ⊗ e−H/k − i

k
εijkJi ⊗ Pk

1Pi = I ⊗ Pi + Pi ⊗ e−H/k

P ∗i = Pi H ∗ = H K∗i = Ki J ∗i = Ji.
G̃k has also a bicross-product structure

G̃k = T IC U(J,K)
whereU(J,K) is the universal covering of the Lie algebrae(3) while T is defined by

[H,Pi ] = 0 [Pi, Pj ] = 0

1H = H ⊗ I + I ⊗H 1Pi = Pi ⊗ e−H/k + I ⊗ Pi.
The duality rules are the same as in classical case.

2. Projective multiplier on Gk

In analogy with the classical case one can define the projective representation of a quantum
groupA acting on a Hilbert spaceH as a mapρ: H→ H⊗ A satisfying

(ρ ⊗ I ) ◦ ρ(ψ) = (I ⊗ ω)((I ⊗1) ◦ ρ(ψ)) (4)

whereω is a unitary element ofA⊗A (projective multiplier) obeying a suitable consistency
condition [10].

Two projective representationsρ andρ ′ are called equivalent if there exists a unitary
elementζ ∈ A such that

ρ̃ = (I ⊗ ζ )ρ. (5)

The corresponding multipliers are related by the formula

(ζ ⊗ ζ )ω = ω′1(ζ). (6)

Obviously, a multiplierω is trivial (the representation is equivalent to the vector one) if

ω = (ζ−1⊗ ζ−1)1(ζ ). (7)
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In the classical case it is sometimes possible to obtain a non-trivial multiplier by contraction
[14]. Assume the group̂G is obtained fromG by contraction. Even ifG does not admit
non-trivial projective multipliers, one can proceed as follows. Letζ(g) be a unitary function
onG, ζ(g)ζ ∗(g) = 1. Define a trivial multiplier onG

ω(g, g′) = ζ ∗(g)ζ ∗(g′)ζ(gg′). (8)

It can happen that,ζ(g) being properly chosen, the specific combination ofζ ’s appearing
on the right-hand side of equation (8) tends to a well-defined limit under contraction while
ζ(g) itself has no such limit. We can then expect that the limitingω(g, g′) is a non-trivial
multiplier on Ĝ. This is, for example, the case forG being the Poincaré group and

ζ({3, a}) = e−imca0
. (9)

The corresponding multiplierω(g, g′), equation (8), gives in the contraction limitc→∞
ω̃ = e−im((v2/2)τ ′+vkRk ia′i ) (10)

the standard multiplier on the Galilei group.
Following the classical case we define the trivial projective multiplier on theκ-Poincaŕe

group:

ω = (eimca0 ⊗ eimca0
) e−imc(30

µ⊗aµ+a0⊗I ). (11)

Our aim is to find the limiting form ofω for κ → 0, c→∞, k ≡ κc; the κ, c-dependence
of m is unknown and must be determined from the condition that the non-trivial limit exists.
To this end, we first rewriteω in a more convenient form making explicit the cancellation
of divergent terms. The long and rather tedious calculations reported in the appendix lead
to the following expression forω:

ω = exp[i(mc − κ ln(cosh(mc/κ)+30
0 sinh(mc/κ)))⊗ a0]

× exp

[
−iκ

sinh(mc/κ)30
k

cosh(mc/κ)+30
0 sinh(mc/κ)

⊗ ak
]
. (12)

In order to calculate the limiting value ofω we use the parametrization (1). It is easy to
check that in order to obtain the non-trivial limit one can choose the following form ofm

m = −k
2c2

ln

(
1− 2Mc2

k

)
(13)

whereM is some fixed mass parameter (which we assume to be positive); let us note that
for k negative,m > 0 andm → 0 for c → ∞ while mc2τ diverges. Some remarks are
here in order. The form of formula (13) is almost uniquely (up to the terms that vanish in
the contraction limit) determined by the condition that the limiting form of equation (12)
exists. Contrary to the ‘undeformed’ case the non-relativistic massM is not equal to its
relativistic counterpartm; this property is, however, restored in thek → ∞ limit. On the
other hand, the relation betweenm andM is purely classical, i.e. it does not contain the
Planck constant. The Planck constant appears explicitly in the exponents on the right-hand
side of equation (11). Consequently, it also appears in the same way in equation (12); this
is in agreement with the fact thatκ has the dimension of the inverse of momentum. It
follows then thatk has the dimension of the inverse of energy and equation (13) does not
contain the Planck constant.

Taking thec→∞ limit in equation (12) one obtains

ω̃ = exp

[
−ik ln

(
1+ Mv

2

2k

)
⊗ τ

]
exp

[
− MvkRki

1+ (Mv2/2k)
⊗ ai

]
(14)
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which can also be written as

ω̃ = exp

[
−i

(
2k

Mv2
ln

(
1+ Mv

2

2k

)
⊗ I

)(
Mv2

2
⊗ τ +MvkRki ⊗ ai

)]
. (15)

This expression is a natural generalization of the one obtained in [10] for the two-
dimensional case. In the classical limitk → ∞ it coincides with the standard multiplier
(10).

Let us conclude this section by noting one problem related to formula (14). In order to
keep the Poincaré massm real we had to assumek negative. This, however, implies that
ω̃ is singular somewhere. On the other hand, withk positive,ω̃ is everywhere regular.

It seems that this problem cannot be cured in a simple way. In the following section
we will present an argument that supports this point of view.

3. Contraction of representations

The unitary representations of theκ-Poincaŕe group were constructed in [15] (see also
[16]). This construction can be summarized as follows. The representation space is the
Hilbert space of square integrable (with respect to the standard measure d3p/2p0) functions
over the hyperboloidp2 = m2 taking their values in the vector space carrying the spins

representation of the rotation group (s is assumed to be integer, fors half-integer one should
consider the quantum ISL(2,C) group [17] which only amounts to small modifications).
The (right) corepresentation reads

ρ : fi(pµ)→ exp
[
−iκ ln(coshmc/κ)+ p0

mc
sinh(mc/κ)⊗ a0

]
× exp

[ −iκ sinh(mc/κ)pk
mc cosh(mc/κ)+ p0 sinh(mc/κ)

⊗ ak
]

·Dij (R(p ⊗ I, I ⊗3))fj (pν ⊗3ν
µ). (16)

Here byD(R(p ⊗ I, I ⊗ 3)) we denote the spins representation of the standard Wigner
rotation written as an element of the tensor productH⊗ A.

It follows from equation (16) that the whole deformation is contained in the translation
sector; in other words, the representation is obtained by integrating the infinitesimal
representation given in the Majid–Ruegg basis [18, 19]. In the limitκ → ∞ unitary
representations of the classical Poincaré group are recovered.

In order to find the representations of thek-Galilei group we apply again the contraction
procedure. To this end we putκ = k/c and takem ≡ m(M, k, c) as defined by equation (13).
As in the classical case it is necessary to subtract the rest energy by redefiningρ:

ρ̃ ≡ (I ⊗ e−imca0
)ρ. (17)

Finally, in contrast to the classical case, we have to redefine the momenta and the
wavefunctions as follows:

p = m

M
q

m

M
fi(p) = f̃i(q). (18)

It is now easy to check that the limitc → ∞ exists and gives the following unitary
representation of thek-Galilei group:

ρ̃nr : f̃i(q)→ exp

[
−ik ln

(
1+ q2

2Mk

)
⊗ τ

]
× exp

[ −iqk
1+ q2/2Mk

⊗ ak
]
(I ⊗Dij (R))f̃j (qk ⊗ Rki + I ⊗MvkRki) (19)
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acting on the Hilbert space of square integrable functions with respect to the invariant
measure d3q and taking values in the vector space carrying the spins representation of the
rotation group.

Using the results contained in [20] one easily concludes that the general form of the
irreducible (co)representation of theκ-Poincaŕe group can be obtained by replacing the
exponentials on the right-hand side of equation (16) by

exp

[
−iκ ln

(
p0+ C
A

)
⊗ a0

]
exp

[
− iκpk
p0+ C ⊗ a

k

]
whereA = A(m, c, κ), C = C(m, c, κ) are two real functions subject to the condition
C2−A2 = m2c2, but otherwise arbitrary. So the question arises whether our trouble can be
cured by an appropriate choice ofA andC such to obtain, in thec→∞, κ → 0 limit, the
representation given by formula (19) whilem = m(M, c, k) lies, for k > 0, in the physical
regionm > 0. This seems not to be possible. Let us put againp = (m/M)q and consider
the second exponential. It is easy to see that, in order to obtain the proper limiting formula,
the following condition should be fulfilled

lim
c→∞ c

2

(
1+ C

mc

)
= k

M
.

However, due to the conditionC2−A2 = m2c2, |C| > mc and the above equation can only
be satisfied providedC = −mc −1, 1 > 0. Then

lim
c→∞

c1

m
= − k

M

which is impossible fork > 0, M > 0 andm > 0.
As a next step let us find the infinitesimal form of the representationρ̃nr . Let us recall

that if

ρ : H 3 f → f(α) ⊗ a(α) ∈ H⊗ A
is the (right) corepresentation of the quantum groupA then any elementX of the dual Hopf
algebra (quantum Lie algebra) is represented by the operator

X̃ : H 3 f → f(α) < a(α), X >∈ H. (20)

The relevant duality rules can be, as was mentioned above, adopted from classical
theory. A simple calculation then gives

Jk = −iεklmql
∂

∂qm
+ sk

Kk = iM
∂

∂qk

H = k ln

(
1+ q2

2Mk

)
(21)

Pk = qk

1+ (q2/2Mk)
.

Let us note thatH andPk are non-singular only providedk > 0.
The operators (21) verify the following commutation rules:

[Ji, Jk] = iεiklJl [Ji, Pk] = iεiklPl
[Ji,Kk] = iεiklKl [Ki,H ] = iPi (22)

[Ki, Pj ] = iMδij e−2H/k + i

2k
δijP

2− i

k
PiPj .



Projective representations ofk-Galilei group 8479

ForM → 0 this algebra coincides with the algebraic sector of thek-Galilei algebra (3).
Finally, let us note the following dispersion relation which is valid within the

representation (21):

k(1− e−H/k) = P 2

2M
. (23)

4. Central extension of thek-Galilei group

It is well known that in the classical case, given a projective representation of a groupG, one
can construct the groupG′ such that this projective representation ofG is equivalent to the
vector representation ofG′. A natural question arises whether the analogous construction
is possible in the quantum case.

Let us assume that there exists a Hopf algebraG′k such that:
(i) G′k is obtained fromGk by adding one new unitary elementζ : ζ ζ ∗ = ζ ∗ζ = I ;
(ii) Gk is a Hopf subalgebra ofG′k;
(iii) 1(ζ) = (ζ ⊗ ζ )ω whereω is a projective multiplier.
Then, if ρ is a projective representation ofGk determined byω (cf equation (4)),

ρ ′ = (I ⊗ ζ )ρ
is a vector representation ofG′k.

In the commutative case (iii) determinesG′k uniquely and consistently. In the quantum
case, however,1 should be a homomorphism which, together with (iii), imposes non-
trivial consistency conditions. It has been already shown [7] thatG′k cannot be obtained
by a straightforward generalization of a standard contraction from a trivial extension of
κ-Poincaŕe. We show below that there is no solution to the problem, at least if the existence
of a well-defined limitk→∞ which reproduces the classical situation is assumed. To this
end, let us note first that equations (2) and (14) imply

exp[α(τ ⊗ I + I ⊗ τ)] ω̃ exp[−α(τ ⊗ I + I ⊗ τ)]
= exp

[
i

(
2k

Mv2
ln

(
1+ Mv

2

2k
e2iα/k

)
⊗ I

)(
Mv2

2
⊗ τ +MvkRki ⊗ ai

)]
(24)

therefore,

[τ ⊗ I + I ⊗ τ, ω̃] = 2

k
ω̃(Mv2⊗ τ +MvkRki ⊗ ai)

(
1

1+ (Mv2/2k)
⊗ I

)
. (25)

The homomorphism condition

[1(ζ),1(τ)] = 1([ζ, τ ]) (26)

gives

1(ζ)

(
2

k

(
1

1+ (Mv2/2k)
⊗ I

)(
Mv2

2
⊗ τ +MvkRki ⊗ ai

))
+(I ⊗ ζ )([ζ, τ ] ⊗ I )ω̃ + (ζ ⊗ I )(I ⊗ [ζ, τ ])ω̃ = 1([ζ, τ ]). (27)

It follows from equation (27) that the commutator [ζ, τ ] should be of the form

[ζ, τ ] = 2

k
ζX (28)

whereX is an element of Gk, the 1/k factor is extracted out explicitly and the factor 2 is
written for convenience.
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The following relation follows immediately from equations (27) and (28):

1(X) = ω̃−1(X ⊗ I )ω̃ + ω̃−1(I ⊗X)ω̃ +
(

1

1+ (Mv2/2k)
⊗ I

)
×
(
Mv2

2
⊗ τ +MvkRki ⊗ ai

)
. (29)

Taking the lowest term in the 1/k expansion we get

Mv2

2
⊗ τ +MvkRki ⊗ ai = 1(X)−X ⊗ I − I ⊗X (30)

which can be viewed as the relation on the classical Galilei group. However, equation (30)
does not hold true because the left-hand side is not a coboundary.

5. Conclusions

Using the contraction technique we have found the projective multipliers on thek-Galilei
group and the corresponding projective representations, both in global as well as in
infinitesimal form. It appears that we obtain a well-defined and regular structure forc→∞
provided the deformation parameterk is taken to be positive. On the other hand, in order
to keep the Poincaré mass parameter in the allowed region, in the course of contraction
we should rather assumek to be negative. We do not have a clear understanding of this
phenomenon.

In the classical case the projective representations can always be converted into the
vector representations of a suitably defined extension of the original group. We have seen
in section 4 that this is not necessarily the case for quantum groups. There exists no
suitable extension ofGk which, in the classical limitk → ∞ reduces to the standard
case. From the physical point of view this seems to be rather a technical and not a very
serious obstacle because we are finally interested in the projective representations of the
original (quantum) group. On the other hand, the problem seems to be mathematically
interesting. In the classical case, the equivalence between the projective representations
and the two–cocycle extensions allows us to reduce the theory of such representations to
the standard theory of vector representations. Our result suggests that in the deformed case
the two-cocycle extensions and the projective representations might be non-interchangeable
concepts. However, this problem calls for a deeper study which should be based on a
general theory of two-cocycle extensions of Hopf algebras [21, 22].

A problem which certainly deserves further study is the multiplication of representations.
This is important if we would like to reconcile the non-cocommutativity of the algebra
coproduct with the basic properties of many-particle systems, especially those containing
identical particles.
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Appendix

We derive here equation (12). In order to simplify the notation we omit the tensor product
symbol ⊗, writing instead with a prime the factors appearing on the right side of it.
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Equation (11) then reads

ω = eimca0
eimca′0 e−imc(30

0a
′0+30

ka
′k+a0). (A.1)

Let us define

X(m) ≡ eimca0
e−imc(30

0a
′0+30

ka
′k+a0). (A.2)

ThenX(0) = I andX(m) obeys the equation

Ẋ(m) = (−ic)(Y0(m)a
′0+ Yk(m)a′k)X(m) (A.3)

where

Yµ(m) = eimca0
30

µ e−imca0
Yµ(0) = 30

µ. (A.4)

Let us first calculateY0(m). Using theκ-Poincaŕe group commutation rules we get

Ẏ0(m) = ic eimca0
[a0,30

0] e−imca0 = − c
κ

eimca0
((30

0)
2− 1) e−imca0

= − c

κ
(Y 2

0 (m)− 1). (A.5)

As the Y0(m) commute for allm, (A.5) together with the initial condition (A.4) can be
solved by separation of variables yielding

Y0(m) = 30
0 cosh(mc/κ)+ sinh(mc/κ)

30
0 sinh(mc/κ)+ cosh(mc/κ)

. (A.6)

With Y0(m) explicitly known one can apply the same procedure to findYk(m); the result
reads

Yk(m) = 30
k

cosh(mc/κ)+30
0 sinh(mc/κ)

. (A.7)

Now we can go back to equation (A.3). It cannot be solved directly because the two terms
on the right-hand side do not commute. To account for this we pass to the ‘interaction
picture’ and define

X(m) = exp

[
− ic

∫ m

0
dmY0(m)a

′0
]
W(m) W(0) = I. (A.8)

For (A.3) we get

Ẇ (m) = −icYk(m) exp

[
ic
∫ m

0
dmY0(m)a

′0
]
a′k exp

[
− ic

∫ m

0
dmY0(m)a

′0
]
W(m). (A.9)

On the other hand,

ic
∫ m

0
dmY0(m) = iκ ln(cosh(mc/κ)+30

0 sinh(mc/κ)). (A.10)

It follows from (A.9) and (A.10) that

Ẇ (m) = −ic30
ka
′k

(cosh(mc/κ)+30
0 sinh(mc/κ))2

W. (A.11)

Again everything commutes so that (A.11) can be solved

W = exp

[
− ic

∫ m

0

dm

(cosh(mc/κ)+30
0 sinh(mc/κ))2

30
ka
′k
]

(A.12)

or

W = exp

[
iκ

sinh(mc/κ)30
ka
′k

cosh(mc/κ)+30
0 sinh(mc/κ)

]
. (A.13)

Equation (11) follows directly from (A.1), (A.2), (A.8) and (A.13).
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