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Abstract. The projective representations of thésalilei group G are found by contracting the
relevant representations of tkePoincaé group. The projective multiplier is found. It is shown
that it is not possible to replace the projective representations, dfyGrector representations
of some of its extensions.

1. Introduction

Recently attention has been paid to particular deformations of spacetime symmetries
depending on a dimensionful parameter, the so-callesymmetries [1-12]. They are
interesting because they provide a rather mild deformation of classical spacetime symmetries
with a dimensionful parameter (cut-off?) naturally built in. It is, of course, still an open
guestion whether quantum symmetries provide a proper way of introducing a fundamental
energy/length scale into the theory; in particular, special attention should be paid to the
problems related to non-cocommutativity of the coproduct which apparently seems to be in
some contradiction with kinematical properties of many-particle systems (see, however, [8]).
In spite of this, it could be interesting to study in more detail the propertiasddformed
spacetime symmetries. Some preliminary studies of their physical implications have already
been undertaken. In particular, Bacry [9] has found that they possess some attractive features
from the point of view of the general requirements imposed on kinematical symmetries.

In most papers that have appeared so far the deformations of Roisyametry have
been studied. However, it seems to be interesting to analyse the deformation of its non-
relativistic counterpart, i.e. the deformed Galilei group. One version of deformed Galilei
algebra was studied in [13], where it was shown to provide some properties af Xt¥e
magnetic Heisenberg model, in particular the energy spectrum of the multi-quasi-particles
bound states. In [3] another deformed Galilei algebra (the so-ckil@dlilei algebra) was
found by applying the contraction procedute{ oo, x — 0, k = k¢ kept fixed) to thec-
Poincaé algebra in a trigonometric version. The properties of this algebra (in a hyperbolic
version) as well as the algebra obtained by letting> oo, k — o0, k = «/c fixed, were
studied in [7]. In [10], thec-Poincaé group was contracted to tfeGalilei group and the
latter was shown to be dual to tteGalilei algebra. The bicross-product structure of both
was revealed and the projective representations of the two-dimensional counterpart of the
k-Galilei group were constructed. Other deformed Galilei algebras were constructed using
a very general contraction scheme in [11] and [12], where their bicross-product structures
were also exhibited.
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In the present paper we continue the study of Ah@alilei group. In section 2 the
projective multiplier is found by contracting the trivial multiplier on thePoincaé group.

In the k — oo limit it reduces to the standard non-trivial multiplier on the classical
Galilei group. In section 3 the unitary projective representations ofkti@alilei group

are constructed (again by contraction from the representations effwéncaé group) and

their infinitesimal form is given. The generators of the infinitesimal representations form the
algebra which is a ‘central’ extension of theGalilei algebra. A question arises whether this
structure can be lifted to the Hopf algebra structure. This question is equivalent to asking
whether there exists a ‘central’ extension of th&alilei group such that the projective
representations of the latter are equivalent to the standard (vector) representations of its
central extension. In section 4 we prove that no such central extension exists. This was
already noticed in [7], where it was shown that the relevant central extension cannot be
obtained by a standard contraction procedure from the trivially extend®goincaé group.
However, it should be stressed that our result refers to the particular deformation of the
Galilei group we are considering, for other deformations the central extension may exist (cf
[7,8]). Section 5 is devoted to some conclusions. Finally, the technicalities are relegated
to the appendix.

We conclude the introduction with a sho#&sung of results obtained in [10].

In order to find thek-Galilei group one can apply the contraction procedure to the
x-Poincaé group defined in [2]. The following convenient parametrization of the Lorenz
group can be used for the contraction procedure (in fact, it differs slightly from the one
adopted in [2])

1

A= ——— =y
V1—1v2/c?

A = Zvi
C

No="Ly (@)
C

) ) Uivk

as well as

Clo = CT.

The following Hopf algebra ¢ (k-Galilei group) is obtained from the contractien— 0,
¢ — 00, k = kc fixed:

[R';.R"] =0 [R';, "] =0 ', v/]1=0

[a',a’] =0 [t,a'] = %ai
[, 0] = Ii_vi [t.R;]=0
R}, d"] = ]ic_(‘sikvamj —v'R") @

AR} =R/ ®R';
Av'=R';@v +v'®I
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Ad'=R;®d +vV®@t+d ®I
Ar=1QI+I®T A A .
(Rl])* — Rl] (vl)* — vl (al)* — al _L,* = T.
G has a bicross-product structure
G, =T* >4 C(E)
whereC (E(3)) is the algebra of functions on the classical grdif8) generated b)R]’i and
v’ while T* is defined by
. i . S
1 — _ 4t 1 J1 — 0
[t,a'] ka [a', a’]
Ad =d' Q@I +1®d At=1tQI+1Qr.
The k-Gallilei algebraGy, dual to G, reads
[Ji, Sl =€ ds [Ji, Kil =€ K;  [Ji, Pl =€ P
. i i
[K;, H] =iP, [Ki, P = 58 P* = L PPy
AL=Ji®I+1®J;
AH=HQ®I+I®H ()
i
AK, =1 QK,+K; ® e_H/k — ;eijk]i ® P

AP, =1QP, + P @ e H/k
P =P H*=H K =K; J*=U.

Gy has also a bicross-product structure
Gr=Tw»aU. K)

whereU (J, K) is the universal covering of the Lie algelwé3) while T is defined by
[H.P]=0  [P.P]=0
AH=H®I+I®H AP =P e 1P

The duality rules are the same as in classical case.

2. Projective multiplier on Gy

In analogy with the classical case one can define the projective representation of a quantum
group A acting on a Hilbert spac# as a map: H — H ® A satisfying

(p®Dop)=Uw)((I&A)op(¥)) (4)
wherew is a unitary element oA ® A (projective multiplier) obeying a suitable consistency
condition [10].

Two projective representations and p’ are called equivalent if there exists a unitary
element; € A such that

p=US)p. ®)
The corresponding multipliers are related by the formula
(¢ ® o= ' AQ). (6)

Obviously, a multiplierw is trivial (the representation is equivalent to the vector one) if
=R LHAW). ™
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In the classical case it is sometimes possible to obtain a non-trivial multiplier by contraction
[14]. Assume the groupf} is obtained fromG by contraction. Even iiG does not admit
non-trivial projective multipliers, one can proceed as follows. 4@t be a unitary function

on G, ¢(g)¢*(g) = 1. Define a trivial multiplier onG

w(g, 8) ="t (g (gg). (8)

It can happen that; (g) being properly chosen, the specific combinatior; &f appearing

on the right-hand side of equation (8) tends to a well-defined limit under contraction while
¢ (g) itself has no such limit. We can then expect that the limiting, ¢’) is a non-trivial
multiplier on G. This is, for example, the case for being the Poincér group and

—imca®
¢({A,a}) = et 9)
The corresponding multiplie® (g, g’), equation (8), gives in the contraction limit— oo
& = efim((v2/2)r/+kakia’i) (10)
the standard multiplier on the Galilei group.
Following the classical case we define the trivial projective multiplier onctifincae
group:
o= (eimca0 ® eimcao) efimc(AO,l®a"+a0®1). (11)

Our aim is to find the limiting form ofv for « — 0, ¢ — o0, k = kc; the k, c-dependence

of m is unknown and must be determined from the condition that the non-trivial limit exists.
To this end, we first rewrita in a more convenient form making explicit the cancellation

of divergent terms. The long and rather tedious calculations reported in the appendix lead
to the following expression fodw:

w = expliimc — « In(coshime/x) + Ag sinh(me/k))) ® a°]
sinh(mc/x) A% ki|
coshime/k) + A% sinh(mc /i) ol

In order to calculate the limiting value @ we use the parametrization (1). It is easy to
check that in order to obtain the non-trivial limit one can choose the following form of

—k 2Mc?
m=?|n<1— kc) (13)

where M is some fixed mass parameter (which we assume to be positive); let us note that
for k negative,n > 0 andm — 0 for ¢ — oo while mc?t diverges. Some remarks are
here in order. The form of formula (13) is almost uniquely (up to the terms that vanish in
the contraction limit) determined by the condition that the limiting form of equation (12)
exists. Contrary to the ‘undeformed’ case the non-relativistic mdsis not equal to its
relativistic counterpartn; this property is, however, restored in the—> oo limit. On the
other hand, the relation between and M is purely classical, i.e. it does not contain the
Planck constant. The Planck constant appears explicitly in the exponents on the right-hand
side of equation (11). Consequently, it also appears in the same way in equation (12); this
is in agreement with the fact that has the dimension of the inverse of momentum. It
follows then thatt has the dimension of the inverse of energy and equation (13) does not
contain the Planck constant.

Taking thec — oo limit in equation (12) one obtains

» = exp| —ikIn 1+M”2 ® 1 |ex Mv'RY, ®a (14)
@ =&xp 2% )T P T T (w20 B

(12)

X exp[—i/c
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which can also be written as

- o 2k Mv? Mv? ok ;
This expression is a natural generalization of the one obtained in [10] for the two-
dimensional case. In the classical limkit— oo it coincides with the standard multiplier
(10).

Let us conclude this section by noting one problem related to formula (14). In order to
keep the Poincé&r massn real we had to assumie negative. This, however, implies that
@ is singular somewhere. On the other hand, vkithositive,® is everywhere regular.

It seems that this problem cannot be cured in a simple way. In the following section
we will present an argument that supports this point of view.

3. Contraction of representations

The unitary representations of thePoincaé group were constructed in [15] (see also
[16]). This construction can be summarized as follows. The representation space is the
Hilbert space of square integrable (with respect to the standard medgy&pg) functions

over the hyperboloigp? = m? taking their values in the vector space carrying the spin
representation of the rotation groupig¢ assumed to be integer, fohalf-integer one should
consider the quantum ISR, C) group [17] which only amounts to small modifications).
The (right) corepresentation reads

P filpy) — exp[—i/( In(coshmc/k) + % sinh(mc/x) ® ao]

—ix sinh(mc/x) py k
x eXp|:mc coshime/x) + po sinh(mce/x) ©a i|
Dij(R(p® 1, 1® A)) fi(py ® A")). (16)

Here by D(R(p ® I, I ® A)) we denote the spin representation of the standard Wigner
rotation written as an element of the tensor prodda® A.

It follows from equation (16) that the whole deformation is contained in the translation
sector; in other words, the representation is obtained by integrating the infinitesimal
representation given in the Majid—Ruegg basis [18,19]. In the limit> oo unitary
representations of the classical Poirkcgroup are recovered.

In order to find the representations of th&alilei group we apply again the contraction
procedure. To this end we put= k/c and taken = m(M, k, c) as defined by equation (13).

As in the classical case it is necessary to subtract the rest energy by redefining

p=U® e ). (17)
Finally, in contrast to the classical case, we have to redefine the momenta and the
wavefunctions as follows:

m m ~
= — — Ji == Ji . 18
p=,4 i@ = i@ (18)
It is now easy to check that the limit — oo exists and gives the following unitary

representation of the-Galilei group:

2
~ .z . q
onr - fi(q@) — exp|: ikIn <1+ _2Mk) ® ri|
—igi

1+q2/2Mk®a]( ® J( ))f)(Qk@ +1Q® Mv ) (19)

x exp[
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acting on the Hilbert space of square integrable functions with respect to the invariant
measure ty and taking values in the vector space carrying the spipresentation of the
rotation group.

Using the results contained in [20] one easily concludes that the general form of the
irreducible (co)representation of thePoincaé group can be obtained by replacing the
exponentials on the right-hand side of equation (16) by

. po+C 0 ik pr k
exp| —ik In exp| —
p[ ‘ < A >®a ] p[ po+C Ba

where A = A(m,c,k), C = C(m,c,«) are two real functions subject to the condition
C? — A? = m?c?, but otherwise arbitrary. So the question arises whether our trouble can be
cured by an appropriate choice afand C such to obtain, in the — oo, x — 0 limit, the
representation given by formula (19) white= m(M, c, k) lies, fork > 0, in the physical
regionm > 0. This seems not to be possible. Let us put agaia (m/M)q and consider

the second exponential. It is easy to see that, in order to obtain the proper limiting formula,
the following condition should be fulfilled

C k
lim ?(1+ — ) =—.
c—>occ ( + mc) M
However, due to the conditioi? — A2 = m?c?, |C| > mc and the above equation can only
be satisfied provided’ = —mc — A, A > 0. Then

. CcA k
im <2 = _ %
c—00 m M

which is impossible fok > 0, M > 0 andm > 0.
As a next step let us find the infinitesimal form of the representaijpn Let us recall
that if

P HSf = flo®am e H®A

is the (right) corepresentation of the quantum grdughen any elemenk of the dual Hopf
algebra (quantum Lie algebra) is represented by the operator

X:HBf—)f(o,) <a(a),X >e H. (20)
The relevant duality rules can be, as was mentioned above, adopted from classical
theory. A simple calculation then gives

. 0
Ji = —l€umqr— + Sk

AGm
. 0
Ky=1M—
g
7
H=FkIn(1 21
( +2Mk) (21)
P qdk

T 1+ (@2/2Mk)
Let us note that/ and P, are non-singular only providekl > 0.
The operators (21) verify the following commutation rules:

[Ji. Ji] =€ d [Ji, P] =€ Py
[Ji, K] =leinK; [Ki, Hl =P, (22)

. | |
[Ki, Pl =iM§; e 2H/k 4 Ea,»jpz - PP
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For M — 0 this algebra coincides with the algebraic sector ofitt@alilei algebra (3).
Finally, let us note the following dispersion relation which is valid within the
representation (21):
P2
k(1 — ey = ——. 23
( )= o (23)

4. Central extension of thek-Galilei group

It is well known that in the classical case, given a projective representation of a §raue
can construct the grou@’ such that this projective representation(is equivalent to the
vector representation a@f’. A natural question arises whether the analogous construction
is possible in the quantum case.

Let us assume that there exists a Hopf algefssuch that:

(i) G, is obtained fromG; by adding one new unitary element ¢¢* = ¢*¢ = 1I;

(ii) Gy is a Hopf subalgebra ofi};

(i) A(¢) = (¢ ® ¢)w wherew is a projective multiplier.

Then, if p is a projective representation 6f, determined by (cf equation (4)),

p'=U®p
is a vector representation @f,.

In the commutative case (i) determin€g uniquely and consistently. In the quantum
case, howeverA should be a homomorphism which, together with (iii), imposes non-
trivial consistency conditions. It has been already shown [7] @jaicannot be obtained
by a straightforward generalization of a standard contraction from a trivial extension of
x-Poincaé. We show below that there is no solution to the problem, at least if the existence
of a well-defined limitk — oo which reproduces the classical situation is assumed. To this
end, let us note first that equations (2) and (14) imply

exp(t @I+ I )] wexpl—a(t @I +1 ® 1)]

2k Mv? Muv? .
— i o/ k k pk i
_exp[u(7ln<1+—e2' )@1)(—2 ®t+MvRi®a>]

(24)
therefore,
[t®l+l®t,&)]:gd)(Mv2®r+kaRk,-®ai)<;®l>. (25)
k 1+ (Mv2/2k)

The homomorphism condition

[A@©), A(D] = A([¢, 7D (26)
gives
A(Q) <§ <; ® 1) (M—vz ® 1 + Mv' R, ®a">)

k \ 14+ (Mv2/2k) 2

+UI (¢, t]@ Do+ (¢ @ DU B [¢, Tha = A, 7). (27)
It follows from equation (27) that the commutatar, f] should be of the form

(6,71 = 2ox 28)

where X is an element of ¢ the 1/k factor is extracted out explicitly and the factor 2 is
written for convenience.
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The following relation follows immediately from equations (27) and (28):

— ~=1 0 1 ? ;
AX)=d " X@Dd+ad (1®X)“’+<1+(Mv2/2k)®1)

Mv? .
X<TU®T+MUkRk,'®al>. (29)
Taking the lowest term in the/k expansion we get
Mv? ok )
T®I+MUR,-®a’:A(X)—X®I—I®X (30)

which can be viewed as the relation on the classical Galilei group. However, equation (30)
does not hold true because the left-hand side is not a coboundary.

5. Conclusions

Using the contraction technique we have found the projective multipliers ok-®Galilei

group and the corresponding projective representations, both in global as well as in
infinitesimal form. It appears that we obtain a well-defined and regular structureforo
provided the deformation parameteiis taken to be positive. On the other hand, in order

to keep the Poincarmass parameter in the allowed region, in the course of contraction
we should rather assumeto be negative. We do not have a clear understanding of this
phenomenon.

In the classical case the projective representations can always be converted into the
vector representations of a suitably defined extension of the original group. We have seen
in section 4 that this is not necessarily the case for quantum groups. There exists no
suitable extension of5; which, in the classical limik — oo reduces to the standard
case. From the physical point of view this seems to be rather a technical and not a very
serious obstacle because we are finally interested in the projective representations of the
original (quantum) group. On the other hand, the problem seems to be mathematically
interesting. In the classical case, the equivalence between the projective representations
and the two—cocycle extensions allows us to reduce the theory of such representations to
the standard theory of vector representations. Our result suggests that in the deformed case
the two-cocycle extensions and the projective representations might be non-interchangeable
concepts. However, this problem calls for a deeper study which should be based on a
general theory of two-cocycle extensions of Hopf algebras [21, 22].

A problem which certainly deserves further study is the multiplication of representations.
This is important if we would like to reconcile the non-cocommutativity of the algebra
coproduct with the basic properties of many-particle systems, especially those containing
identical particles.
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Appendix

We derive here equation (12). In order to simplify the notation we omit the tensor product
symbol ®, writing instead with a prime the factors appearing on the right side of it.
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Equation (11) then reads
w = eimcao eimca/0 efimc(Aooa/OJerka’kJrao). (Al)

Let us define

X(m) = eimcao e—il?zc(Aooa’O+A0ka’k+a0)' (A2)
Then X (0) = I and X (m) obeys the equation

X (m) = (—ic)(Yo(m)a® + Yi(m)a™) X (m) (A-3)
where

Y, (m) = &mca’A0, g imee® Y, (0) = A°,. (A.4)
Let us first calculaté’p(m). Using thex-Poincaé group commutation rules we get
Yo(l’l’l) —ic émcao[ao7 AOO] e—imcao — _E eimcao((AOO)Z _ 1) e—imcyl0

K
C
= — ;(Yoz(m) —1). (A.5)

As the Yo(m) commute for allm, (A.5) together with the initial condition (A.4) can be
solved by separation of variables yielding

A% coshimc/k) + sinh(me/«)
AS sinh(mc/k) + coshime /)
With Yo(m) explicitly known one can apply the same procedure to fipdn); the result
reads

Yo(m) = (A.6)

A%
coshime/k) + A% sinhmc/k)’
Now we can go back to equation (A.3). It cannot be solved directly because the two terms
on the right-hand side do not commute. To account for this we pass to the ‘interaction
picture’ and define

Yi(m) = (A7)

X (m) = exp|: —ic / " dm Yo(m)a/0j| W (m) W) =1. (A.8)
For (A.3) we get i
W (m) = —icY(m) exp[ic/m dm Yo(m)a/0:|a/k exp|: - icfm dm Yo(m)a’O}W(m). (A.9)
On the other hand, i i

ic /0 " dm Yo(m) = ix In(coshime/x) + A% sinh(me/«)). (A.10)

It follows from (A.9) and (A.10) that

—icA%a* W
(coshimc/k) + A% sinhmec/k))2
Again everything commutes so that (A.11) can be solved

_ (" dm 0 i
W= eXp|: IC/O (coshime/k) + A% Sinh(mc/lc))2A K ] (A12)

W(m) = (A.11)

or

(A.13)

H 0 .k
W= exp[ik sinh(mc/Kk)A°a ] '

coshimce/x) + A% sinh(mc/«k)
Equation (11) follows directly from (A.1), (A.2), (A.8) and (A.13).
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